首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   979篇
  免费   114篇
  国内免费   38篇
化学   1108篇
数学   1篇
物理学   22篇
  2024年   1篇
  2023年   4篇
  2022年   6篇
  2021年   17篇
  2020年   16篇
  2019年   20篇
  2018年   10篇
  2017年   14篇
  2016年   28篇
  2015年   54篇
  2014年   56篇
  2013年   60篇
  2012年   48篇
  2011年   68篇
  2010年   68篇
  2009年   75篇
  2008年   72篇
  2007年   70篇
  2006年   81篇
  2005年   87篇
  2004年   79篇
  2003年   78篇
  2002年   55篇
  2001年   13篇
  2000年   9篇
  1999年   6篇
  1998年   5篇
  1997年   14篇
  1996年   7篇
  1995年   6篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
排序方式: 共有1131条查询结果,搜索用时 15 毫秒
1.
The synthesis and characterisation of a family of block codendrimers consisting of highly versatile mesogenic and carbazole‐containing 2,2‐bis(hydroxymethyl)propionic acid (bis‐MPA) dendrons are reported. The liquid‐crystal behaviour was investigated by means of differential scanning calorimetry, polarised‐light optical microscopy and X‐ray diffraction. Depending on the chemical structure of the constituent dendrons, the codendrimers show lamellar or columnar mesophases. On the basis of the experimental results, models both at the molecular level and in the mesophase are proposed. The physical properties of the block codendrimers derived from the presence of the carbazole moiety in their structure were investigated: photoluminescence in solution and in the mesophase, electrochemical behaviour and hole transport. Electrodeposition of carbazole dendrons afforded a globular supramolecular conformation in which the mesogenic molecular side plays a key role.  相似文献   
2.
Self‐assembly of AB2 and AB3 type low molecular weight poly(aryl ether) dendrons that contain hydrazide units were used to investigate mechanistic aspects of helical structure formation during self‐assembly. The results suggest that there are three important aspects that control helical structure formation in such systems with acyl hydrazide/hydrazone linkage: i) J‐type aggregation, ii) the hydrogen‐bond donor/acceptor ability of the solvent, and iii) the dielectric constant of the solvent. The monomer units self‐assemble to form dimer structures through hydrogen‐bonding and further assembly of the hydrogen‐bonded dimers leads to macroscopic chirality in the present case. Dimer formation was confirmed by NMR spectroscopy and by mass spectrometry. The self‐assembly in the system was driven by hydrogen‐bonding and π–π stacking interactions. The morphology of the aggregates formed was examined by scanning electron microscopy, and the analysis suggests that aprotic solvent systems facilitate helical fibre formation, whereas introduction of protic solvents results in the formation of flat ribbons. This detailed mechanistic study suggests that the self‐assembly follows a nucleation–elongation model to form helical structures, rather than the isodesmic model.  相似文献   
3.
4.
New materials based on low-generation polyphenylene dendrimers with the light emission in the blue spectrum range were synthesized and examined for an efficient organic light emitting diodes (OLED) application. It has been shown that the ratio of p-phenylene groups with high fluorescence parameters to 1,3,5-triphenylbenzene groups with low fluorescent parameters may be the possible reason for the experimental variations of relative quantum yield of photoluminescence in the compounds explored. The quantum yield value is increased with a number of dendrimer generations up to 50–70%. The role of bromine atoms as the luminescence quenchers have been demonstrated, which is important for synthesis route choice.  相似文献   
5.
The atom transfer radical copolymerization of N‐substituted maleimides such as N‐phenylmaleimide (PhMI), N‐cyclohexylmaleimide (ChMI), and N‐butylmaleimide (NBMI) with styrene initiated with dendritic polyarylether 2‐bromoisobutyrates in an ionic liquid, 1‐butyl‐3‐methylimidazolium hexafluorophosphate ([bmim][PF6]), at room temperature and anisole at 110 °C was investigated. The dendritic‐linear block copolymers obtained in ionic liquid possessed well‐defined molecular weight and low polydispersity (1.05 < Mw/Mn < 1.32) and could be used as a macroinitiator for chain‐extension polymerization, suggesting the living nature of the reaction system. The ionic liquids containing catalyst could be recycled in the atom transfer radical polymerization systems without further treatment. Compared with polymerization conducted in anisole, the polymerization in ionic liquid had a stronger tendency for alternation. The tendency for alternation decreased in the order PhMI > NBMI > ChMI in [bmim][PF6] and PhMI > ChMI > NBMI in anisole. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2156–2165, 2003  相似文献   
6.
The synthesis and characterization of novel first‐ and second‐generation true dendritic reversible addition–fragmentation chain transfer (RAFT) agents carrying 6 or 12 pendant 3‐benzylsulfanylthiocarbonylsulfanylpropionic acid RAFT end groups with Z‐group architecture based on 1,1,1‐hydroxyphenyl ethane and trimethylolpropane cores are described in detail. The multifunctional dendritic RAFT agents have been used to prepare star polymers of poly(butyl acrylate) (PBA) and polystyrene (PS) of narrow polydispersities (1.4 < polydispersity index < 1.1 for PBA and 1.5 < polydispersity index < 1.3 for PS) via bulk free‐radical polymerization at 60 °C. The novel dendrimer‐based multifunctional RAFT agents effect an efficient living polymerization process, as evidenced by the linear evolution of the number‐average molecular weight (Mn) with the monomer–polymer conversion, yielding star polymers with molecular weights of up to Mn = 160,000 g mol?1 for PBA (based on a linear PBA calibration) and up to Mn = 70,000 g mol?1 for PS (based on a linear PS calibration). A structural change in the chemical nature of the dendritic core (i.e., 1,1,1‐hydroxyphenyl ethane vs trimethylolpropane) has no influence on the observed molecular weight distributions. The star‐shaped structure of the generated polymers has been confirmed through the cleavage of the pendant arms off the core of the star‐shaped polymeric materials. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5877–5890, 2004  相似文献   
7.
Compared with linear polymers, more factors may affect the glass‐transition temperature (Tg) of a hyperbranched structure, for instance, the contents of end groups, the chemical properties of end groups, branching junctions, and the compactness of a hyperbranched structure. Tg's decrease with increasing content of end‐group free volumes, whereas they increase with increasing polarity of end groups, junction density, or compactness of a hyperbranched structure. However, end‐group free volumes are often a prevailing factor according to the literature. In this work, chain‐end, free‐volume theory was extended for predicting the relations of Tg to conversion (X) and molecular weight (M) in hyperbranched polymers obtained through one‐pot approaches of either polycondensation or self‐condensing vinyl polymerization. The theoretical relations of polymerization degrees to monomer conversions in developing processes of hyperbranched structures reported in the literature were applied in the extended model, and some interesting results were obtained. Tg's of hyperbranched polymers showed a nonlinear relation to reciprocal molecular weight, which differed from the linear relation observed in linear polymers. Tg values decreased with increasing molecular weight in the low‐molecular‐weight range; however, they increased with increasing molecular weight in the high‐molecular‐weight range. Tg values decreased with increasing log M and then turned to a constant value in the high‐molecular‐weight range. The plot of Tg versus 1/M or log M for hyperbranched polymers may exhibit intersecting straight‐line behaviors. The intersection or transition does not result from entanglements that account for such intersections in linear polymers but from a nonlinear feature in hyperbranched polymers according to chain‐end, free‐volume theory. However, the conclusions obtained in this work cannot be extended to dendrimers because after the third generation, the end‐group extents of a dendrimer decrease with molecular weight. Thus, it is very possible for a dendrimer that Tg increases with 1/M before the third generation; however, it decreases with 1/M after the third generation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1235–1242, 2004  相似文献   
8.
The effects of the size (pseudo‐generation number) and nature of end groups on physical and rheological properties were investigated for a series of hyperbranched polyesters based on an ethoxylated pentaerythritol core and 2,2‐bis‐(hydroxymethyl)propionic acid repeat units. The observed linear dependence of the melt viscosity on the molar mass in the high pseudo‐generation‐number limit indicated that entanglement effects were substantially absent. Moreover, the marked influence of end capping of the end groups on the physical and rheological properties suggested that intermolecular interactions were dominated by contacts between the outer shells of the molecules, in which the end groups were assumed to be concentrated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1218–1225, 2004  相似文献   
9.
A series of metallodendrimers, assembled by means of bis(terpyridinyl)Ru(II) connectivity on poly(propylene imine) dendrimer scaffolds, with homogeneous or heterogeneous surfaces, were prepared. Differential scanning calorimetry and thermogravimetric analysis were used to determine their thermal behavior, glass‐transition temperatures, and the decomposition kinetics and temperatures; no synergy effects for these properties were observed for the heterogeneously surfaced constructs in contrast to the corresponding homogeneously coated materials, which exhibited different values depending on their surface functionalities. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1487–1495, 2004  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号